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The in silico “scoring” of protein-ligand interactions has been
an area of intense research because of its potential impact on rational
drug discovery and design. Because of the relentless pressure on
the pharmaceutical industry to reduce drug discovery costs,1 in silico
structure-based screening is viewed as a very attractive and cost-
effective alternative to traditional medicinal chemistry approaches.
A number of methods can “dock” a small molecule into a biological
receptor, and these include, for example, DOCK,2 AutoDock,3

FlexX,4 and GOLD.5 Docking is based on the principles of molec-
ular recognition, and these programs sample the conformational
space of a small molecule and “pose” them in the active site of the
protein. To a large extent, the pose generation problem is solved,
while the prediction of the free energy of binding (∆Gbind) or
“scoring” of the poses has proven to be a major challenge. Despite
recent developments in this area, a physically based scoring function
(SF) that is robust enough to evaluate the binding of ligands to
proteins has been elusive.

Current-generation SFs can be grouped into three categories:
empirical scoring functions (ESF), knowledge-based potentials
(KBP), and force field (FF) methods. ESFs use empirically derived
energetic contributions related to enthalpy (∆H) and entropy (∆S)
and regression methods to fit it to a set of experimental observations.
The problems with ESFs are that they can only be as discriminating
as the overall potential function allows and they depend on the
diversity of the training set.6,7 In KBPs,∆Gbind is represented as a
potential of mean force calculated from frequencies of interatomic
contacts from a database of structures.8 Recently, KBPs have been
shown to be successful in predicting binding affinities.9 However,
the accuracy of KBPs depends on the proper definition of the
reference state and on the number of structures available to build
the potential.9,10FF-based methods use potentials such as AMBER,11

CHARMM,12 OPLS,13 and MMFF14 to score poses, and they have
been used frequently in free-energy perturbation (FEP) methods to
evaluate relative∆Gbind.15 FF models have been extremely powerful
in modeling biological systems but generally use simple electrostatic
models (Coulomb potentials), which limit their ability to accurately
model electrostatic energies. However within the FF framework,
conformational sampling has been used in LIE16,17and MM/PBSA18

methods. While all classes of SFs have shown success, none have
been able to accurately and broadly score protein-ligand interac-
tions. Moreover, metal-containing systems pose a challenge for these
models due to the nature of the interactions between a small molec-
ule and a metal ion in the active site. Indeed, many SFs deal with
metals by ignoring them entirely in the scoring process. For
example, the log10 value of atom pair occurrence of zinc and other
heavy atom pairs is so low that the interaction is ignored in the
KBP function PMF.8 In the potentials that do explicitly model metal
ions, charge-transfer (CT) interactions between the metal ion and
the ligand (which reduces the charge on the ligand) are generally
not accounted for.

Quantum mechanics (QM), although not new to the field of
molecular interactions, has until now been used only to study
smaller systems because of the computational cost associated with
it. In recent work, our group has described the linear scaling divide
and conquer (D&C) approach in conjunction with semiempirical
Hamiltonians that can be used to study large molecular systems at
the QM level.19 We have also coupled this to a Poisson-Boltzmann
(PB)-based self-consistent reaction field method (SCRF) for
calculating solvation free energies.20 The use of QM allows us to
move away from FFs, especially when evaluating electrostatic
interactions. FFs generally ignore QM effects such as polarization
and CT.21 In the first study of its kind, we report the use of QM
for scoring protein-ligand interactions. We note that none of the
previous studies have treated the complete protein-ligand com-
plexes at such high levels of theory for∆Gbind prediction. Herein,
we briefly describe our method and present the results of its
application to a set of 18 carbonic anhydrase (CA) inhibitors and
5 carboxypeptidase (CPA) inhibitors.

The 18 CA and 5 CPA complexes were downloaded from the
Protein Data Bank (PDB).22 These inhibitors and the experimental
∆Gbind are listed in the Supporting Information. Protons were added
to heavy atoms of the protein using the LEAP module of AMBER
5.0.23 Energy minimization was performed using constraints to relax
the added protons using AMBER 5.0. All heavy atoms were fixed
at the experimental coordinates during energy minimization. The
active site of the uncomplexed protein was modeled with a zinc-
bound water molecule. The interaction energy was calculated using
the following thermodynamic cycle:

The solution-phase∆Gbind was decomposed into the gas-phase
interaction energy and solvation free energy. The gas phase∆Gb

g

is the sum of∆Hb
g and∆Sb

g. The QM part of∆Hb
g was calculated

using DivCon24 at the AM125 level as∆Hf[complex]- ∆Hf[protein]
- ∆Hf[ligand]. The dispersive part of the nonpolar interaction was
calculated using the attractive part of the Lennard-Jones potential
using the AMBER 96 force field.11 The entropic contribution to
binding was described by a solvent and conformational component.
The solvent entropy, which is gained by water, on being displaced
from the active site by the ligand during binding26 was estimated
based on the surface area burial for carbon, oxygen, nitrogen, and
sulfur atoms during binding. The conformational entropy was
evaluated from the number of degrees of freedom that was lost in
the small molecule and side chains in the active site during
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binding.2,7,9,27-30 We used a value of 1.0 kcal/mol for the loss of a
rotatable bond. The free energy of solvation is well-known to play
an important role in binding,31-34 and we evaluated it using our
PB/SCRF method.20 CM2 charges35 were used in the PB/SCRF
calculation. Thus, the final total score is a sum of∆Gb

g and
(∆Gsolv

protein-ligand - ∆Gsolv
protein - ∆Gsolv

ligand).
Figure 1 is a plot of experimental binding free energy (∆Gexp)

calculated as-RT lnKi versus the calculated total score. The
predictive capability of the method for scoring these inhibitors is
shown in this plot. We achieve good agreement with∆Gexp with a
square of the correlation coefficientR2 of 0.69 (R ) 0.83) for this
set of inhibitors. We calculated the standard error as:

wheremTS+ c is the equation of the line fitted to∆Gexp andTS
is the total score. The mean standard error for this set is 1.5 kcal/
mol. We note that we obtain anR2 of 0.69 without fitting anyof
the contributions of the total score. Nonetheless, the solvent entropy
term offers further opportunity for refinement since it is simply a
difference of surface areas and not an energy term. We derive cross-
validated parameters for the surface areas of atom types carbon,
oxygen, nitrogen, and sulfur by maximizing theR2 between the
total score and the∆Gexp. Applying the final set of surface area
parameters results in anR2 of 0.8 (R ) 0.90) (Figure 1). The mean
standard error in this case is 1.18 kcal/mol. We note that only the
surface area dependent part of the total score has been fit without
fitting any of the other terms. The difference in the magnitude of
the total score and∆Gexp arise from unweighted contributions to
the total score. Fitting weighted contributions to∆Gexp corrects this
discrepancy and results in even higherR2 (data not shown). In
previous studies, we have reported on polarization and CT effects
in biomolecular systems.21 There is a significant amount of CT in
these cases as well as between the ligand and the zinc ion in the
active site. In the case of CA, the amount of CT is on the order of
1e, while in CPA, which has a carboxylate ligand, the amount of
CT is reduced to about 0.5e (Table 2 in the Supporting Information).
Recent studies have also pointed out the importance of polarization
in binding.36 The issue of sampling conformational microstates has
not been addressed in this study but will be explored in future
studies. We note that including sampling in other studies has
resulted in improving prediction accuracy even further.16,18

In this paper, we have demonstrated the ability of a QM method
to score known protein-ligand poses. In particular, we have focused

on two classes of zinc metalloenzymes, which would be difficult
to accurately model using ESFs, KBPs, or FFs because of the
presence of the metal ion. As expected, we found that there is
significant and variable metal-ligand CT among different families,
a phenomenon that is difficult to capture using simpler scoring
functions. Finally, by including two different families of proteins
we show that this method has the ability to perform across different
families.
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Figure 1. Plot of calculated total score versus the∆G (exp) for the set of
23 complexes. ([) Sum of the individual contributions from eq 1. The square
of the correlation coefficientR2 is 0.69. (b) Surface areas fitted against
∆G (exp) for the set of 23 complexes. The square of the correlation
coefficientR2 is 0.8.
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